Rosmarinic acid induces melanogenesis through protein kinase A activation signaling.
نویسندگان
چکیده
Melanogenesis is a physiological process that results in the synthesis of melanin pigments, which play a crucial protective role against skin photocarcinogenesis. In order to determine the effects of rosmarinic acid on melanogenesis and elucidate the molecular events of melanogenesis induced by rosmarinic acid, several experiments were performed in B16 melanoma cells. In this study, we showed that the melanin content and tyrosinase expression were increased by rosmarinic acid in a concentration-dependent manner. In addition, after the melanin content was increased by rosmarinic acid, it was reduced by H-89 and KT 5720, protein kinase A (PKA) inhibitors, but not by SB203580, a p38(mapk) inhibitor, or Ro-32-0432, a PKC inhibitor, which suggests the involvement of PKA in rosmarinic acid-induced melanogenesis. Consistent with this, rosmarinic acid induced the phosphorylation of CRE-binding protein (CREB), but had no effect on the phosphorylation of p38(mapk) or the inhibition of Akt phosphorylation. Additionally, rosmarinic acid induced the activation of cAMP response element (CRE) without having any effect on cAMP production, which suggests that rosmarinic acid-induced melanogenesis is mediated by PKA, which occurs downstream of cAMP production. This result was further confirmed by the fact that rosmarinic acid-induced phosphorylation of CREB was inhibited by H-89, but not by PD98059, a MEK1 inhibitor, or by LY294002, a phosphatidylinositol-3-kinase (PI3K) inhibitor. Rosmarinic acid-induced expression of tyrosinase protein was attenuated by H-89. Based on these results, we report for the first time that rosmarinic acid induces melanogenesis through PKA activation signaling.
منابع مشابه
نقش گیرندههای نیکوتینی استیل کولین، پروتئین کیناز B و پروتئین کیناز Mζ بر اثر حفاظتی اسید رزمارینیک در مدل بیماری آلزایمر القا شده به وسیلهی بتا آمیلوئید (35-25) در موش صحرایی
Background and Objective: Alzheimer’s disease (AD) is one of the most common neurodegenerative diseases and results from the extracellular accumulation of b-amyloid peptides and the resulting neuronal dysfunction. In this study, the role of nicotinic acetylcholine receptors, protein kinase B (PKB) and protein kinase M (PKM) were evaluated in order to examine the mechanism of the protective effe...
متن کاملInhibition of Melanogenesis by Gallic Acid: Possible Involvement of the PI3K/Akt, MEK/ERK and Wnt/β-Catenin Signaling Pathways in B16F10 Cells
Gallic acid is one of the major flavonoids found in plants. It acts as an antioxidant, and seems to have anti-inflammatory, anti-viral, and anti-cancer properties. In this study, we investigated the effects of gallic acid on melanogenesis, including the activation of melanogenesis signaling pathways. Gallic acid significantly inhibited both melanin synthesis and tyrosinase activity in a dose- a...
متن کاملEupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway
Objective(s): Eupafolin, a major active component of Eupatorium perfoliatum L., has anti-inflammatory and anti-oxidant properties. Lipopolysaccharide (LPS) is responsible for myocardial depression. A line of evidences revealed that LPS induces autophagy in cardiomyocytes injury. This study aims to evaluate the effects of eupafolin on LPS-induced cardiomyocyte autophagy...
متن کاملSesamin induces melanogenesis by microphthalmia-associated transcription factor and tyrosinase up-regulation via cAMP signaling pathway.
In this study, we confirmed that sesamin, an active lignan isolated from sesame seed and oil, is a novel skin-tanning compound. The melanin content and tyrosinase activity were increased by sesamin in a dose-dependent manner in B16 melanoma cells. The mRNA and protein levels of tyrosinase were also enhanced after the treatment with sesamin. Western blot analysis revealed that sesamin induced an...
متن کاملRosmarinic acid inhibits Ca2+-dependent pathways of T-cell antigen receptor-mediated signaling by inhibiting the PLC-gamma 1 and Itk activity.
Rosmarinic acid (RosA) is a hydroxylated compound frequently found in herbal plants and is mostly responsible for anti-inflammatory and antioxidative activity. Previously, we observed that RosA inhibited T-cell antigen receptor (TCR)- induced interleukin 2 (IL-2) expression and subsequent T-cell proliferation in vitro. In this study, we investigated in detail inhibitory mechanism of RosA on TCR...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemical pharmacology
دوره 74 7 شماره
صفحات -
تاریخ انتشار 2007